
20th Australasian Fluid Mechanics Conference
Perth, Australia
5-8 December 2016

On the Effect of Workload Ordering for Reacting Flow Simulations using GPUs

K. A. Damm1, R. J. Gollan1 and A. Veeraragavan1

1Centre for Hypersonics, School of Mechanical & Mining Engineering,
The University of Queensland, Brisbane, Queensland 4072, Australia

Abstract

In reacting flow simulations, considerable computational effort
is spent on updating the change of composition due to chem-
ical reactions. As a means of accelerating the simulation of
reacting flows, we have been investigating the use of graphics
processing units (GPUs) to compute the chemistry update in a
massively parallel manner. We have some evidence from previ-
ous work that our use of the GPU is less than optimal because
of imbalances in the workload that is sent to the GPU. In the
present work, we implement several new strategies to better or-
der the workload of chemistry updates that are processed by the
GPU and test the performance of these strategies. The results
show that we can achieve a speed-up of 1.4x for a particular
flow case with hydrogen/ oygen combustion when using a GPU
accelerator. The results also show that the performance of the
GPU accelerator is insensitive to the workload odering.

Introduction

When performing numerical modelling of reacting flows, a
source term appears in each of the species continuity equations.
This source term represents the production or loss of species due
to chemical reactions in the flow. In operator-splitting methods,
the integration of these chemical source terms are solved in a
separate update step from the fluid dynamic update. In this case,
the update of the chemistry problem becomes one of solving a
set of coupled ordinary differential equations (ODEs) in each
finite-volume cell of a computational domain. The computa-
tional effort required to solve these ODE problems scales with
the number of species in the flow and the number of chemical
reactions between those species. For example, when using our
in-house flow solver Eilmer [4], we have determined that ap-
proximately 40% of the compute time is spent on the chemistry
update in a combusting flow simulation with a 19-species, 53-
reactions mechanism for methane-air combustion. This fraction
of computational effort spent on the chemistry update increases
with increaing numbers of species and reactions. Therefore, we
believe there is benefit to focussing efforts on reducing the com-
putational expense of the chemistry update, particularly as we
seek to improve the fidelity of our modelling with larger reac-
tion mechanisms.

One avenue to explore for reducing the computational expense
is to exploit the inherent parallelism in performing the chem-
istry update of a reacting flow simulation. These chemistry
ODE problems are local in space, that is, they are not dependent
on the properties in neighbouring finite-volume cells. This then
presents a great opportunity to exploit parallel processing at a
fine scale because the independent ODE problems in each finite-
volume cell can be computed in parallel without any data depen-
dency across cells. To exploit this fine-grained parallelism, one
desires a compute architecture that offers many (on the order of
hundreds) of concurrent execution threads. Many researchers in
computational science are now turning their attention to graph-
ics processing units (GPUs) as one such architecture that offers
many concurrent threads in a single computational unit.

In this paper, we are particularly focussed on hybrid CPU/GPU

implementations for the simulation of reacting flows. We are in-
terested in the model of using a CPU/GPU algorithm where the
CPU is used to: 1) provide overall of control of the simulation;
2) perform the fluid dynamic updates; and 3) control the off-
load of chemistry update to a GPU and collation of results from
the GPU. In this implementation model, the GPU is used exclu-
sively to perform the chemistry update and return results to the
CPU. The idea of using a GPU in this manner, as an accelerator
for reacting flow simulations, has been studied by several inves-
tigators. Niemeyer and Sung [8] compared the time of a single-
core CPU implementation to that of a CPU/GPU implemen-
tation for reacting flow. They reported performance improve-
ments of 126x, 59x and 4.5x faster for the CPU/GPU impleme-
nation as compared to the CPU-only for various reaction mech-
anisms. Shi et al [11] implemented the CHEMEQ2 solver [7]
on a GPU. Their results showed that the GPU solver using the
CHEMEQ2 algorithm had comparable performance to 13 CPU
processors working in parallel on the same task. Encouraged
by these results, we began work on a GPU-chemistry module to
augment our in-house compressible flow solver, Eilmer.

In our earlier work [1, 2], we developed a GPU chemistry mod-
ule in the OpenCL programming language and coupled this to
our flow solver written in C++. For an idealised test case, but
with only a small number of species and reactions, we showed
a speed-up of 4x when using the CPU/GPU hybrid method as
compared to the CPU on its own to solve the same problem
However, the same reaction mechanism used on a more realistic
reacting flow problem only showed a performance improvement
of approximately 2x when using the GPU module for chemistry
updates. We suspected that we had encountered the problem
known as ‘branch divergence’ in the GPU calculations. This
concept is discussed in next section. In this paper, we present a
new implementation of the GPU module that couples with the
latest version of Eilmer, version 4, which is now implemented
in the D programming language [5]. The goal of this work is to
investigate changes to the CPU/GPU algorithm that may miti-
gate the branch divergence problem.

Background on branch divergence in GPU calculations

A standard GPU architecture consists of one or more compute
units. Housed on each compute unit are a number of processing
threads. These threads are the elements on which floating point
operations are executed. GPUs are built on a Single Instruc-
tion Multiple Data (SIMD) architecture. This format allows the
concurrent execution of a single operation on multipled sets of
data.

The processing threads on a GPU are grouped into smaller sub-
sets called warps. Warps vary in size for different vendors. For
example, in NVIDIA devices (which are used in the present
work), a warp consists of 32 processing elements. Only one
warp on a GPU will be executing at one point in time. Hence,
the 32 processing elements will be truly executing concurrently.
For peak run-time performance, all 32 processing threads in
a warp execute the same instruction path. If any conditional
statements (such as if or else) cause two threads in a warp to
travel down different instructional paths then branch divergence



is said to occur. This is a direct consequence of the SIMD struc-
ture. When divergence occurs in a warp, the thread which is
taking a different instructional path must wait until the other
31 threads have finished executing before its own execution can
begin again. In the worst case, where the 32 threads are all on
differing instructional paths, this leads to the code running in
serial. Branch divergence is a major concern since the single-
threaded performance of a GPU thread is far inferior to that of
a CPU thread when performing tasks serially. The focus of this
paper is to report on efforts to enhance our CPU/GPU hybrid
reacting flow simulator to reduce or avoid branch divergence as
much as possible. In particular, we look at strategies for pack-
aging up the workload of cells that are sent to the GPU for pro-
cessing. These strategies are all implemented on the CPU-side
of the algorithm. No changes were made to the GPU kernel
code.

CPU/GPU reacting flow algorithm and extensions

As mentioned earlier, Eilmer employs operator-splitting to in-
tegrate the reacting compressible flow equations in time. In
the operator-splitting method, the fluid dynamic update (motion
due to convection and diffusion) is performed first, and then fol-
lowed by the update due to chemistry. The details of the govern-
ing equations and the implementation of the update is provided
in the second author’s thesis [3]. One advantage of separating
the update is that the best numerical methods for each of these
updates can be used. For example, one often encounters stiff
ODE systems for the chemistry update and these are best tack-
led with specialised ODE solvers that exploit the nature of these
chemistry systems. A detailed discussion of operator-splitting
in the context of reacting flow simulation is provided in the text
by Oran and Boris [9].

On each step of the update, the flow field is advanced in time
by an amount dt f low. Often this value of dt f low is too large to
use in the update of the chemistry problem. To remedy this,
the chemistry problem in each finite-volume cell is solved with
smaller timesteps, dtchem, and these smaller steps are repeated
until the accumulated time equals the dt f low value. We call this
method subcycling because we perform several cycles of solv-
ing the chemistry ODE problem within the larger flow update.
In this approach, there is one single dt f low value for the en-
tire computational domain (that may change as the simulation
proceeds). However, there is a unique dtchem value for every
finite-volume cell because we use the most appropriate value
for dtchem in each cell based on the local flow conditions. This
idea of variation of dtchem across the flow field is shown in Fig-
ure 1 in which the contour colouring follows the size of the local
dtchem value. In this simulation, dt f low ≈ 3.0× 10−6s whereas
the dtchem values are several orders of magnitude smaller. In
Figure 1, the deep blue regions can be interpreted as regions
where the most computational effort is spent on the chemistry
update since these areas have the smallest dtchem value and re-
quire the most subcycles. The regions towards the red end of
the spectrum represent the computationally cheap chemistry up-
dates.

This dtchem value is stored as one of the properties in the data
structure for the cell for subsequent reuse on the next chemistry
update. The assumption here is that the dtchem value from a pre-
vious flow update will be a good value for the next update. This
works well when the flow conditions have only varied slightly
between updates. In cases where flow conditions have changed
dramatically between flow timesteps, such as a passing shock
wave, there are correction mechanisms in the chemistry ODE
solver to adjust the dtchem value to something more appropri-
ate. We provide this description of the operator-splitting and
subcycling to give context to how the CPU/GPU reacting flow

Figure 1: Variation of dtchem values for a representative react-
ing flow field. For reference, the dt f low value is approximately
3.0×10−6s.

fluid dynamic update

executed on CPU

GPU off-load

chemistry update

executed on CPU

chemistry update

executed on CPU

Figure 2: Flow diagram for update algorithm with both CPU-
only and CPU/GPU updates shown.

algorithm is implemented.

CPU-only algorithm

When solving a reacting flow problem in Eilmer using a CPU
only, each timestep consists of a fluid dynamic update followed
by a chemistry update. This approach is depicted in the con-
trol flow diagram in Figure 2 by following the arrows in bold.
When using the CPU-only approach, each chemistry problem
is solved sequentially: the algorithm loops over all cells in the
domain in turn solving for the new chemical state after timestep
dt f low. Note that the chemistry update in each cell might require
a different number of subcycles depending on the local value of
dtchem in that cell. In the performance testing, presented later,
we designate this algorithm as ‘CPU-only’.

CPU/GPU algorithm: original implementation

In earlier work [1, 2], we reported on a CPU/GPU hybrid algo-
rithm in which the CPU was used to perform the fluid dynamic
update, and then the chemistry update work was off-loaded to
the GPU. This approach is depicted in Figure 2 by following
the dashed arrows. Note that the solution of the individual ODE
problems can be performed in parallel on the GPU. The ex-
act number of parallel ODE problems that can be handled si-
multaneously is dependent upon the memory and thread count
available on the GPU. In typical reacting flow simulations, the
number of cells passed to the GPU far exceeds the number of
parallel tasks the GPU can handle. As such, the GPU stages its
workload: it compute the chemistry update for as many cells
as it can handle at one time in parallel, then loads up a new set
of cells. This continues until all cells have had their chemistry
update computed. We designate this algorithm as ‘GPU-orig’
in the Results section.

In this original implementation, we took a very simple approach
as to how we passed the workload of cells to the GPU. That



Shock boundary

Heat release
zone

Solid projectile

Figure 3: Temperature contours for supersonic flow of hydro-
gen/oxygen mixture over a projectile. On the bottom half, the
computational domain of finite-volume cells is overlayed. For
clarity, the number of cells has been reduced by a factor of 8 in
each dimension.

simple approach was to load the cells in the logical order they
are stored on the CPU. We made no attempt to group together
cells with similar workload. As discussed earlier, we believed
this might lead to branch divergence in the GPU worker threads,
and so diminish the benefit of the parallel execution.

In what follows, we describe changes to how we distribute the
workload on to the GPU. In effect, this amounts to changes in
the ordering of how cells are passed to the GPU. Our idea was
to group cells of similar flow conditions or computational ex-
pense together so that when processed by the GPU, the effect of
branch divergence was minimised or even completely avoided.

GPU workload ordering based on flow structure

Figure 3 shows the temperature contours of a reacting flow field
of a hydrogen/oxygen mixture. The hemispherical projectile is
driven into the combustible mixture at Mach 3.55 and causes a
detonation in the shock layer gas in front of the projectile. This
is used as our test case in the Results section and the details are
presented there. For the moment, note that the flow field has
some inherent structure: it naturally divides into a pre-ignition
zone and a heat release zone. The bottom-half of Figure 3 shows
the finite-volume cells overlayed on the flow field. One can see
that if the workload for the GPU could be grouped based on
those zones, then we are likely to send cells ordered in such a
way that they have similar computational workload in terms of
chemistry.

Indeed, there is an easy change to our algorithm for packaging
cell data such that we can group cells based on the flow struc-
ture. That change is to reorder our loop indices i and j when
packaging the cells since the j logical direction runs in the body
tangential direction. We call this algorithm ‘GPU-reorder’.

We acknowledge that this particular reordering is very specific
to this flow field, and not a general solution. Our goal is sim-
ply to test if the reordering gives a noticeable improvement in
computational performance. If it does, then it would be worth
investigating how to apply this idea in a more general and dy-
namic way. By dynamic, we mean a packaging of cells that
changes throughout the simulation in response to changes in the
flow field structure.

GPU workload ordering based on chemistry timestep

Referring again to Figure 1, we note there is a range of dtchem

values across the flow field. When we simply package the cells
for the GPU off-load in logical ordering — for example, loop-
ing over i and j indices in a structured grid — it seems likely
that cells with very different flow conditions will be processed
concurrently by the GPU. When the flow conditions vary a lot,
then so too do the instructional paths for the execution of the
chemistry ODE update. This large variation is exactly what one
would like to avoid to mitigate branch divergence. The ‘GPU-
reorder’ algorithm, discussed above, is one attempt to reduce
this variation in workload. However, that approach still has de-
ficiencies in terms of minimising the variation in workload that
is off-loaded to the GPU.

A second strategy of workload ordering that we attempt in
this work is to order the cells for processing based on their
dtchem value. The assumption here is that cells with a similar
dtchem value will present similar computational workloads for
the GPU.

In the implementation, we use the sort algorithm that is part
of the D standard library to order the cells from smallest dtchem
to largest. The sorting occurs on the CPU and then the cells are
off-loaded to the GPU in sorted order. During a simulation, the
dtchem value in a given cell varies as the flow field evolves and
the local conditions change in the cell. As such, performing a
sort on dtchem just once may not be an optimal strategy since the
flow field changes with time. Any initial benefit in workload
ordering might rapidly degrade as the flow conditions change
in individual cells. We wondered if there would be a trade-off
between the time spent sorting cells against any performance
gains by having the cells sorted by workload. To quantify this
trade-off, we tried three variants of our sorting approach:

1. ‘GPU-sort-every’, in which the sorting of cells occurs on
every timestep before off-load to the GPU;

2. ‘GPU-sort-once’, in which the sorting of cells occurs once
at the beginning of the simulation; and

3. ‘GPU-sort-10’, in which the sorting of cells occurs on ev-
ery 10th timestep.

Results

A hydrogen/oxygen reacting flow case was chosen to test the
performance of the various workload ordering algorithms. The
particular flow case corresponds to an experiment performed by
Lehr [6] in which a hemispherical projectile was fired into a
stoichiometric mixture of hydrogen and oxygen at supersonic
speeds. We use his experimental results at Mach 3.55 as our
test case. The quasi-steady flow field for this set of flow condi-
tions is depicted in Figure 3. A previous validation study of the
CPU-only algorithm showed a very good comparison between
simulation and experimental results. As such, this seemed a
good starting point to test the new CPU/GPU algorithms.

In order to test the various algorithms, each test was per-
formed starting from the same initial condition where the flow
had reached a quasi-steady state. That quasi-steady state was
computed with the CPU-only algorithm using the shock-fitting
mode in Eilmer4. The use of shock-fitting mode is why the
shock lies perfectly on the inflow boundary in Figure 3. For
each algorithm test, the flow field was advanced forward in time
a further 1000 iterations. The test was repeated 5 times for each
algorithm so that an average time for simulation could be re-
ported. There is some variation in run time on the CPU/GPU
systems because we do not have precise control over the linux
scheduler during tests. However, the averaging of results over
five runs accounts for this variability. In these tests, the Rogers
and Schexnayder [10] reaction mechanism was used, which
contains 9 species and 28 reactions for a hydrogen/oxygen mix-
ture. Our in-house implementation of Mott’s α-QSS integra-



Table 1: Timing results in seconds for various workload ordering algorithms performing 1000 iterations of the Lehr M=3.55 test case.

Algorithm Run 1 Run 2 Run 3 Run 4 Run 5 Avg. Std. dev. Speed-up (GPUavg/CPUavg)

CPU-only 6777 6757 6796 6780 6800 6782 17.1 -
GPU-orig 4850 4866 4816 4806 4803 4828 28.2 1.40
GPU-reorder 4838 4831 4825 4855 4832 4836 11.5 1.40
GPU-sort-every 4872 4890 4932 4858 4831 4877 37.7 1.39
GPU-sort-once 4878 4877 4836 4845 4834 4854 21.9 1.40
GPU-sort-10 4871 4873 4876 4899 4860 4876 14.3 1.39

tor [7] was used on the chemistry ODE problems for the both
CPU-only and the CPU/GPU hybrid algorithms.

The results of the timing tests are displayed in Table 1. The
encouraging result is that the use of the GPU to compute the
chemistry update gives a speed-up of 1.4x when compared to
the CPU-only simulation. This gives confidence that our new
D/OpenCL implementation is working well since these results
are consistent with tests performed with our older C++/OpenCl
implementation. It also confirms that there is some benefit to
augmenting a reacting flow simulator with a GPU chemistry
module. The disappointing result is that the various algorithms
for ordering the cells off-loaded to the GPU have made no dif-
ference to the performance.

The result that the performance of the GPU calculations is in-
sensitive to the workload ordering has several interpretations.
It could be argued that branch divergence is of little impor-
tance in the GPU performance for this application and so the
performance is insensitive to the order in which the cells are
processed. We believe this interpretation of the result is incor-
rect because we have previously collected evidence that branch
divergence occurs when moving from idealised tests to more
realistic cases [1].

A second interpretation of the result is that branch divergence
is occurring, but that it occurs at a finer scale than what we
can influence with a reordering of cells. This can be explained
as follows. In the algorithms for workload ordering presented
here, we have tried to group cells with a similar dtchem value
on the assumption that these will require a similar number of
steps to accumulate the dtchem values up to the dt f low. This is
a very coarse means for ensuring that the instructional paths of
grouped cells are similar. These workload ordering methods ig-
nore the fact that there are deeply-nested if -statements in the
ODE update method. We believe that branch divergence is still
occuring at this deeply-nested fine scale. This is supported by
the result that the run-time performance of the GPU calculation
is consistent across all the various algorithms because these al-
gorithms for workload ordering do not affect the branch diver-
gence at a fine scale.

Conclusion

In this paper, we tested the performance of several algorithms
for ordering the off-loaded work sent to a GPU chemistry
update in a hybrid CPU/GPU simulator for reacting flows.
The timing results showed that the CPU/GPU algorithms had
a speed-up of 1.4x compared to the CPU-only for a hydro-
gen/oxygen combusting flow case. The results also showed that
the performance of the GPU accelerator was insensitive to the
workload ordering sent to the GPU. This result suggests to us
that branch divergence is occurring on a fine scale in the GPU
calculations — at a fine scale that is not affected by high-level
changes in the grouping of cells as they are off-loaded to the
GPU.

In this work, all the attempts at algorithm changes to mitigate
branch divergence were implemented on the CPU-side of the
code. In future work, we intend to focus our efforts on the GPU-
side of the code. Specifically, we will aim to reduce the number
of branching statements in the GPU code in an attempt to miti-
gate the fine-scale branch divergence.

References

[1] Damm, K. A., Using GPUs to reduce wall-clock times of
reacting flow simulations, Bachelor of Engineering The-
sis, School of Mechanical & Mining Engineering, The
University of Queensland, 2015.

[2] Damm, K. A., Gollan, R. J. and Veeraragavan, A., Accel-
eration of combustion simulations using gpus, in The Aus-
tralian Combustion Symposium 2015 (ACS2015), 2015,
148–151, 148–151.

[3] Gollan, R. J., The Computational Modelling of High-
Temperature Gas Effects with Application to Hypersonic
Flows, Ph.D. thesis, The University of Queensland, 2009.

[4] Gollan, R. J. and Jacobs, P. A., About the formulation,
verification and validation of the hypersonic flow solver
Eilmer, International Journal for Numerical Methods in
Fluids, 73, 2013, 19–57.

[5] Jacobs, P. A. and Gollan, R. J., Implementation of a
compressible-flow simulation code in the D programming
language, Applied Mechanics and Materials, 846, 2015,
54–60.

[6] Lehr, H. F., Experiments on shock-induced combustion,
Astronautica Acta, 17, 1972, 589–597.

[7] Mott, D. R., Oran, E. S. and van Leer, B., A quasi-steady-
state solver for the stiff ordinary differential equations of
reaction kinetics, Journal of Computational Physics, 164,
2000, 407–428.

[8] Niemeyer, K. E. and Sung, C.-J., Accelerating moderately
stiff chemical kinetics in reactive-flow simulations us-
ing GPUs, Journal of Computational Physics, 256, 2014,
854–871.

[9] Oran, E. S. and Boris, J. P., Numerical Simulation of Re-
active Flow, Cambridge University Press, 2005.

[10] Rogers, R. C. and Schexnayder Jr., C. J., Chemical ki-
netic analysis of hydrogen-air ignition and reaction times,
Technical Paper 1856, NASA, 1981.

[11] Shi, Y., Green, W. H., Wong, H.-W. and Oluwole, O. O.,
Accelerating multi-dimensional combustion simulations
using GPU and hybrid explicit/implicit ODE integration,
Combustion and Flame, 159, 2012, 2388–2397.


